
www.manaraa.com

59

Config: a case study in combining software
engineering techniques

David Maleya and Ivor Spenceb

aSt. Mary’s University College, 191 Falls Road,
Belfast BT12 6FE, Northern Ireland, UK
E-mail: d.maley@stmarys-belfast.ac.uk
bQueen’s University of Belfast, Belfast BT7 1NN,
Northern Ireland, UK
E-mail: i.spence@qub.ac.uk

Config is a software component of the Graphical R-Matrix
Atomic Collision Environment. Its development is docu-
mented as a case study combining several software engineer-
ing techniques: formal specification, generic programming,
object-oriented programming, and design by contract. It is
specified in VDM++; and implemented in C++, a language
which is becoming more than a curiosity amongst the sci-
entific programming community. C++ supports object ori-
entation, a powerful architectural paradigm in designing the
structure of software systems, and genericity, an orthogonal
dimension to the inheritance hierarchies facilitated by object
oriented languages. Support in C++ for design by contract
can be added in library form. The combination of techniques
make a substantial contribution to the overall software quality.

1. Introduction

The stages of the software development lifecycle are
well-documented [1,2]. Improved techniques for the
various stages of the process include the use of formal
notation for the specification stage, object-orientation
for the design and implementation stages, and design
by contract for the testing stage. There is no implica-
tion intended that these stages follow in sequence – an-
other overall improvement in software design method-
ology has been the development of a more integrated
approach. In addition, the exploitation of genericity has
proven to be a valuable technique at several stages of
the software engineering process. This paper presents
a case study in the use and interaction of these various
techniques; the focus is on genericity, as a technique
that has perhaps received less acclaim that it deserves
in the literature to date.

2. Overview

This paper describes how the software engineering
techniques of generic programming, object-oriented
programming, formal specification and design by con-
tract were employed in tandem in the construction of
the software component Config [3], with a particular
focus on the utility of genericity.

2.1. Genericity

Generic programming has the potential to enhance
software quality in a number of ways. In its simplest
form it is a way of avoiding duplicating code in circum-
stances where the only distinction between two pieces
of code is the types they manipulate. Thus to use a list
of INTEGERs and a list of REALs, only one list module
(or whatever construct is appropriate) is needed. Soft-
ware quality is in this case enhanced by elimination of
duplication: this means that information is in one place
only, and it therefore cannot be inconsistent. Then if
it needs to be changed, there is no danger of miss-
ing an instance where the change is necessary. It also
promotes reuse, since generic modules can be written
which can serve a wide range of purposes when instan-
tiated. This was the motivation for the C++ Standard
Template Library (STL) [4]. Therefore, the designer
and implementer can concentrate on the specific prob-
lems of the task at hand without having to reinvent the
wheel each time a list of objects or a search algorithm
is needed.

In this paper we demonstrate some more sophisti-
cated uses of genericity, whereby two distinct aspects
to supporting run-time assertion monitoring in C++ are
illustrated: providing a framework in which the be-
havioural properties can be monitored, and providing
a framework in which behavioural properties can be
expressed.

Generic programming is a static technique,amenable
to both object-oriented and non object-oriented pro-
gramming. This is borne out in the languages that sup-
port it. For example, object-oriented C++ and non

Scientific Programming 8 (2000) 59–71
ISSN 1058-9244 / $8.00 2000, IOS Press. All rights reserved

www.manaraa.com

60 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

object-oriented Ada do support it, and object-oriented
Java and non object-oriented Fortran90 do not. It will
be demonstrated in this paper how powerful and elegant
techniques for expressing a software architecture are
obtained from a language that supports both genericity
and inheritance. Therefore genericity is used to best
effect in an object-oriented environment. The imple-
mentation language chosen for the software component
documented here, Config, was C++ [5]. A rich and
diverse language, C++ now boasts both a standard and
near enough standard-compliant compilers.

In practice, more often than not generic program-
ming takes a form known as constrained genericity. It
then becomes an abstraction technique, like the inher-
itance taxonomies of object-oriented languages. The
abstraction in this case is a set of requirements on the
data types that may be used to instantiate a generic
parameter.

This case study takes examples from the develop-
ment of Config, a software component of the Graphical
R-Matrix Atomic Collision Environment [6]. Software
for generating electron distributions and couplings was
available in the computation stage of an early version
of the R-matrix program package. However, the orig-
inal package is written in FORTRAN 77 and is typ-
ical of many similar such large software systems, in
that it has evolved over many years, through the efforts
of numerous personnel, in a process of controlled it-
erative enhancement. Often the modification and ex-
tension of such large, complex and mature software
systems is severely hampered because some compo-
nents of the system are written in an implementation-
dependent fashion, they are inadequately documented,
their functionality is not precisely known, and under
certain circumstances they fail to operate correctly.

The design goals of Config therefore included the
following:

– write a formal specification of the component in
order to state precisely and unambiguously the
functionality of the component;

– apply object-orientation as the principal structur-
ing mechanism for the system;

– make maximum use of existing libraries in order
to minimise development time, and take advantage
of the efforts and expertise of other developers;

– minimise the gap between the formal specification
statement and the implementation. Ideally this
means constructing a proof that the implementa-
tion is correct with respect to the formal specifica-
tion; but if that is unrealistic then to adopt an inter-
mediate methodology such as design by contract.

Initial work to address these problems for Config, in-
volved developing a formal specification of the problem
of generating electron distributions and couplings [7].
A version of the formal specification, rewritten to take
advantage of the newly-emerging object-oriented spec-
ification language VDM++ [8] and showing the signif-
icant characteristics of the abstract data types of Config,
is reproduced in WebAppendix I.

The formal specification states the properties of the
data types involved, and the properties of the operations
on them. It serves a number of important purposes.
Firstly, it provides a precise, unambiguous, consistent
and complete statement of the functionality of the com-
ponent. At the same time, it does not over-specify: it
states what the component should do, but without stat-
ing how it should do it. A finished program meets most
of the criteria for being considered a formal specifica-
tion: except that it over-specifies. A formal specifica-
tion would state that a routine returns the square root of
its input, but it need not state how the square root is to be
computed. The original formal specification of Config
was written in the language VDM-SL [9]. The second
important purpose served by the formal specification is
that it provides a basis for program proving, for reason-
ing about properties such as completeness and consis-
tency, and for thinking in general. Thirdly it serves as
system documentation, so maintainers are not obliged
to read the code in order to discover the system’s func-
tionality. It has been shown that the predicates in a
specification can be used as component-library search
keys [10], and also that specifications can be used for
test generation [11–14], animation [15], performance
tuning and system integration.

VDM++ provides a number of types for modelling
the problem domain, such as sets, maps and lists (lists
are called sequences in VDM++). It is a natural next
step to use the C++ Standard Template Library to im-
plement these types. The types are known collectively
in the STL as containers, since their purpose is to con-
tain collections of objects. The STL provides generic
container classes, from which new types can be con-
structed without having to be concerned with the imple-
mentation of the container data structures. Likewise,
many of the common operations upon these containers
are provided in the form of parameterised algorithms.
These algorithms are in addition to the methods of the
container classes. Indeed, some commentators would
view the STL as a collection of generic algorithms, and
consider containers as being provided simply to give
the algorithms something to work upon.

The similarities between the data structures and
structure manipulation methods provided by VDM++,

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 61

and those provided by C++ STL may lead one to won-
der whether the VDM++ is really necessary. Can the
STL instantiations not serve as specification, imple-
mentation and documentation? This is not the case,
or at least not entirely. It is in the statement of the
behaviour of the operations that constitute the model
of the physical system where VDM++ provides ab-
stractions that are not possible in C++/STL. In theory,
C++/STL data structures and structure manipulation
operations could be used as the basis for stating the
operations that model the physical system (Larch [16]
would permit this, for example),but it would not be pos-
sible to achieve the clear, precise and implementation-
independent statement possible in VDM++. Further-
more, the abstract behavioural properties can then be
transformed into validity checks as part of the design
by contract process, independently of the algorithmic
implementation of those properties.

One of the underlying principles of the STL is that
complexity guarantees are given with the components.
This means that operations are guaranteed to complete
within stated time scales: it is recognised that a library
will not be used if performance is sacrificed for the
sake of generality. The recent C++ Standard [17] was
even influenced by this requirement [18], with the ad-
dition to the templates section of partial specialisation,
which allows algorithms and classes to be much more
efficient. Partial specialisation adds a large degree of
flexibility to working with the STL.

The STL also provides specialised support for nu-
meric operations. For example, it is recognised that
much numeric work relies on relatively straightforward
single-dimensional arrays of floating-point values, and
that these structures are supported by high-performance
machine architectures and aggressive code optimisa-
tion. Consequently the STL provides a vector (called
valarray) designed specifically for speed when us-
ing the usual numeric vector operations.

It has already been mentioned that the container class
structures and their methods closely mirror the abstract
data types used in the specification language. However,
the STL does not provide mechanisms for checking the
properties of the types created from it as they might be
stated in a formal specification. A formal specification
of the data types in a software component will specify
not only data structure and permitted operations, but
also constraints. In a language such as VDM++, for
the data structures these will be in the form of invariants
on the values of the data; for operations, they will be
in the form of preconditions and postconditions on the
execution of operations. Thus, the STL needs to be
extended to accommodate this requirement.

It must be understood that the requirement to be able
to monitor the constraints stated in the formal specifica-
tion is not merely a luxury desired by computer science
theorists: it is a basic tenet of the development tech-
nique known as Design by Contract [19], which has sig-
nificant implications for software quality. Probably the
foremost exponent of this technique is Bertrand Meyer,
the designer of the language Eiffel [20]. Eiffel provides
language support for Design by Contract. However, the
language has had little impact thus far on the scientific
community. One significant limitation of Eiffel is that
the mechanism for expressing constraints is limited,
and only simple propositions are permitted: certainly
the assertion mechanism provided is not sufficient for
many of the constraints of Config.

So what benefits does Design by Contract offer? In
essence, the method is an aid to constructing correct
programs. It also serves as a tool for documenting soft-
ware, enhances the opportunity for reuse, and provides
a debugging tool. It relies on the idea of assertions:
predicates which express properties of the system. If a
predicate is not satisfied, there has been an error. Mon-
itoring assertions means that testing can be undertaken
in parallel to implementation, not just as a subsequent
phase. The source of an error is easiest to identify if the
error is detected immediately following its introduction
into the system; also, if development is suspended un-
til the error is removed, the problem does not become
buried under layers of additional complexity. Taking
time to write a formal specification of the abstract data
types in the system (that is, data structures and the op-
erations upon them), coupled with the use of assertion
checking during implementation, mean that overall de-
velopment times and error rates can be reduced for the
lifetime of the system [21].

Finally, it must be stated that program correctness
is a relative term: a program is correct (or otherwise)
only with respect to its specification. A correct imple-
mentation of an incorrectly-specified system will not
exhibit the desired behaviour.

2.2. Basics of Config

The essential operation of the Config component is
shown in Fig. 1. The component takes an atomic con-
figuration, provided by the client, and a data table,
which is fixed, and uses them to generate the electron
couplings. The resulting data is termed a configuration
tree list. A simple configuration tree is shown in Fig. 2.

Configuration trees have two significant characteris-
tics, the symmetry of their root term (5Go in the exam-

www.manaraa.com

62 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

Coupling
Generator

Atomic
Configuration

Configuration
Tree List

Russell-
Saunders

Table

Fig. 1. Config functionality.

 5 o
 G
 |
 +---+---+
 | |
 2 3 e 3 o
 3d . F P
 |
 +---+---+
 | |
 1 2 o 2 e
 2p . P S
 |
 +---+---+
 | |
 1 2 e *
 1s . S

Fig. 2. A Configuration Tree.

ple) and their electron distribution (1s12p13d2 in the
example). Other components of the GRACE suite re-
quire a client to provide as input both the symmetry and
the electron distribution of any trees being processed.
However, it may or may not be possible to construct
a tree exhibiting both a given symmetry and a given
electron distribution. Config is used to prevent any in-
consistencies of this nature arising: it can determine
the symmetries of all the trees possible from a given
atomic configuration and electron distribution, and all
the electron distributions which give rise to a given
symmetry from a given atomic configuration.

2.3. Object orientation and specification languages

Two of the most common languages used in for-
mal specification are VDM-SL and Z [22], neither
of which is object-oriented. For example, in VDM-
SL, an uncoupling operation might be stated as be-
low. Firstly, there is a specification statement which

states that ConfigurationTree is defined to be a
sequence of ConfigurationTreeElements.

ConfigurationTree =seq ofConfigurationTreeElement

Following this, the specification statements first
state the signature of the operation, that it takes
a ConfigurationTree as input and produces a
ConfigurationTree as output, and then state the
definition of the operation using one of VDM-SL’s
built-in operators for sequences: the VDM-SL operator
tl removes the first element of a sequence. VDM-SL
provides a number of ways to define the behaviour of
an operation, and VDM++ provides still more. The
form shown is known as definitional.

uncoupleConfigurationTree: ConfigurationTree→
ConfigurationTree
uncoupleConfigurationTree(ct) ∆ tl ct

Object orientation is a software engineering tech-
nique whereby the construction of a system is based
around varying types of objects. These objects provide
functionality through a stated set of operations. If the
object stores data it is often encapsulated in such a way
that it can only be accessed via the operations. Thus the
executing system may be viewed as a set of communi-
cating objects, wherein objects send messages to one
another requesting that stated operations be performed
(perhaps with given data).

Each object defines precisely the format of the mes-
sages it is capable of responding to (its operations).
Therefore, a list object might be capable of responding
to a message that requests that a given item be appended
to it, but is unlikely to be capable of responding to a
message that requests the list to return its date of birth.
This latter scenario is unlikely in a statically-typed lan-
guage like C++, where the compiler can enforce cor-
rect protocol; but in other object-oriented languages,
such as Smalltalk, any message can be sent to any ob-
ject, leaving with the message sender the responsibility
for ensuring that protocol is observed. The essential
point is that each message is intended for and oriented
around a particular type of object.

Both VDM-SL and Z now have object-oriented
extensions (VDM++ and Z++ [23] respectively).
VDM++ was chosen because the facility in VDM-SL
for the explicit statement of preconditions and post-
conditions integrated well with the desire to use de-
sign by contract as a basis for testing. The major dif-
ferences between VDM-SL and Z are discussed more

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 63

fully in [24]. Larch/C++ [25] was also considered,
since it offered the prospect of a rich specification li-
brary (the Larch Shared Library) and also greater ex-
pressivity of implementation concerns. However, the
absence of tool support for typechecking made it an
impracticable choice.

These extensions are constantly evolving, and the
debate about how best to incorporate genericity into
VDM++ is on-going; it is unfortunate that the cur-
rent state of the language does not currently permit the
economy of expression that can be enjoyed in C++.
However, using VDM++, the object supplies a context
that at least renders the name repetition in the above
example redundant. Clearly there is a lot of repetition
of the name ConfigurationTree in the definition
of the uncouple operation, and using an object-oriented
language eliminates this. This hardly constitutes a ra-
tionale for adopting an object-oriented approach, but
the example typifies the way many operations are in-
herently oriented around a particular data item, in this
case a ConfigurationTree. Hence in VDM++,
a ConfigurationTree class which maintains a list
k of ConfigurationTreeElements can be de-
fined with an uncouple() member as follows:

class ConfigurationTree
instance variables
k: seq of ConfigurationTreeElement;
. . .
operations
uncouple(): →

pre len(k) >0
postk = tl k∼

The signature of the operation is in this case empty,
and the action is defined in terms of a postcondition
which states the effect of the operation on the instance
variable k of the ConfigurationTree object. The
postfix tilde (∼) denotes the ‘old’ value of the sequence
k, i.e. the value of the sequence prior to the operation.

2.4. The STL

The STL is a large and extensible body of efficient,
generic and interoperable software components. Many
of the fundamental algorithms and data structures of
computer science are included, but with a crucial dis-
tinction from the way that they are usually found in
library form: the algorithms and data structures are de-
coupled from one another. The STL can be thought of
simply as a library of generic algorithms; the container

classes of the library are there merely to give the algo-
rithms something to work on. It is perfectly acceptable
(and indeed expected) that STL algorithms will be used
on user-defined containers,and that STL containers will
be acted upon by user-defined algorithms. Adoption of
constrained genericity permits the level of decoupling
necessary to achieve this, using iterators and function
objects. The STL algorithm find if(..) illustrates
their use.

template <class InputIterator,
class Predicate>
InputIterator find if(InputIterator
first, InputIterator last, Predicate
pred) {

while (first != last && !pred
(*first)) ++first;
return first;

}

It might be called as follows:

void f(vector<int>& v1)
{

find if (v.begin(), v.end(), pred());
}

It is used to search a container to find an element
that satisfies a given predicate. The type of con-
tainer need not be known: it simply is required to
implement the iterator protocol, so that dereferenc-
ing the iterator (“*first”) and prefix incrementing
it (“++first”) have the expected effect. The pred-
icate is a function object: an object for which the
function application operator operator()(..) is
defined. Thus “pred(*first)” means “apply the
operator()(..) method to the pred object with
parameter *first”. Clearly the function application
operator of class pred must therefore be defined to
return a bool, (or a type convertible to a bool). An
iterator to the matching container element is returned.
If the search is unsuccessful then an iterator to last,
the element after the final element of the container, is
returned.

A key idea of the standard containers is that they
should be logically interchangeable wherever rea-
sonable, so that, for example, code written for a
vector<T>may not need to be altered if a list<T>
is used instead (however, the performance may alter).
In order to achieve this, the STL makes use of some
new programming concepts. Principal amongst them

www.manaraa.com

64 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

is the idea of iterators: the purpose of an iterator is
to provide a way to sequentially access the elements
of an aggregate object without exposing its underly-
ing representation. Moreover, they make it possible to
traverse the container in different ways (such as from
the end to the beginning). Iterators make it possible to
decouple the algorithms and data structures. They are
an example of a design pattern [26]. Design patterns
are high level abstractions that can be adopted in the
solution of various commonly encountered problems in
object-oriented design.

Not every class can be used to instantiate vector
<T>. For example, the instantiating class must provide
a default constructor. When there is a requirement like
this on the instantiating types, the genericity is known
as constrained genericity.
vector<T> is used a number of times in Config,

but in fact more often that not what is required is in fact
an ordered vector. An ordered vector can be created
from an unordered vector, and there is a discussion on
how best to achieve this in WebAppendix II.

3. Example Config types

3.1. OrderedShellConfigurationList

In order to consider anOrderedShellConfigu-
rationList, it is necessary to first consider the one
fixed data item in Config, the Russell-Saunders table.
A contraction of the Russell-Saunders table is shown in
WebAppendix III. The properties of this data abstrac-
tion are stated in the formal specification. It is reason-
ably straightforward to map the data structures stated
in the specification to instantiations of data structures
provided by the STL. However, there is no such direct
correlation with the stated behavioural properties for
the physical operations.

The Russell-Saunders table is used to create an
OrderedShellConfigurationList, which is
an ordered list of ShellConfigurations. All the
members of an OrderedShellConfiguration-
List have identical ShellDescription compo-
nents, and are ordered by their ShellTerms. The
ShellTerms are obtained from the table. Thus an ex-
ample of anOrderedShellConfigurationList
would be

2p4 1
0S

e 2p4 3
2P

e 2p4 1
2D

e

In Fortran90 an implementation of an Ordered-
ShellConfigurationList would need to pro-

vide operations such as create empty, length,
head, tail, copy and append (the full imple-
mentation is given in WebAppendix IV). The choice of
a linked list implementation (requiring the additional
functions mallocate and dispose) is not essen-
tial for an OrderedShellConfigurationList
since there is a known upper bound on its length, but
the choice is not crucial to the illustration. There are
two points to note about this implementation.

(i) the major point is that the implementation of a
number of other modules in the component, such
as ShellList, ConfigurationTree and
ConfigurationTreeList (not to mention
list modules in other components) would look
practically identical. They must also provide op-
erations such as create empty, length,
head, tail, copy and append. This
repetition is tedious and unnecessary – if not er-
ror prone – for the programmer. In addition, it
is not readily amenable to change, and the larger
the scale of the change, the worse the situation
becomes. If a bug is found in a list routine, an
amendment is required for each of the list types
used. If it is found that the list implementation
is inefficient and must be changed in its entirety,
the amount of work increases in proportion.

(ii) a less significant point is that the programmer
has to be concerned with handling dynamic
storage. A different choice of representation
which does not use dynamic storage can be made
for OrderedShellConfigurationList,
but not for the other list types in Config, so the is-
sue cannot be avoided. Handling dynamic stor-
age can be a serious issue which can impair im-
plementation performance, not to mention pro-
grammer productivity. One immediate conse-
quence is that if routines are defined to return
user-defined types, then unavoidable memory
leakage can result [27].

Using the STL, both of these problems are immedi-
ately overcome. To define an OrderedShellCon-
figurationList, once the list element type
ShellConfiguration has been defined, an Or-
deredShellConfigurationList can be de-
fined by instantiating the container class vector<T>
with the type ShellConfiguration:

class OrderedShellConfigurationList:
public vector<ShellConfiguration>
{

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 65

public:
OrderedShellConfigurationList
(ShellDescription);

};

The STL container class vector<T> provides
practically all the functionality required to implement
anOrderedShellConfigurationList, such as
insert(..), erase(..) and size() operations.
Only the construction functionality is missing. In
C++, when an object is created its constructor is called.
Constructors can be overloaded, and so the parameters
given at the point of creation determine which con-
structor is called. If no constructors are given, the
compiler will generate empty constructors. In the case
shown, an OrderedShellConfigurationList
is constructed from a ShellDescription (and the
RSTable, which need not be a parameter to the
constructor since it is a constant). In order to pro-
vide this additional constructor the class must inherit
from vector<ShellConfiguration> (and not
just typedef it).

However, there is another aspect of the specification
of OrderedShellConfigurationList besides
construction that the STL does not provide. The speci-
fication also states an invariant. This is a property that
any OrderedShellConfigurationList must
observe in order to be valid.

The invariant states that theShellTerms of the ele-
ments of anOrderedShellConfigurationList
mirror those in the RS-Table, and that the ShellDes-
criptions in a given row are all identical. It
also makes a statement about the symmetry of the
RSTable, and states a simplifying assumption about
shells with OrbitalAngularMomenta that are
greater than or equal to three. This last point reflects
the remark made at the end of the introduction, that
correctness is a relative notion.

This invariant must hold both before and after every
operation on anOrderedShellConfiguration-
List object. It must also hold after construction: it is
therefore an implicit postcondition on the constructor.
However, it does not state how the construction process
is to be carried out: it is simply a predicate on the state
of the object when construction has been completed. In
a development environment, ideally one implementor
writes the constructor and another writes an implemen-
tation of the invariant that checks that the constructor
is creating valid objects.

Notice that the code that has to be written – the con-
structor – is precisely that which is particular to the

system. The writer of the STL can provide operations
such as appending, and erasing, but is unlikely to know
about, and certainly cannot cater for, the construction of
an OrderedShellConfigurationList from a
ShellDescription and the RSTable: but that is
not necessary. The power of inheritance and genericity
combined mean that very often there is an appropriate
and unique point for each piece of programming that
is specific to the component. Not only can the imple-
menter concentrate on the specific problems of the task
in hand without having to reinvent the wheel each time
a list of objects is needed, better still very often there
is no need to invent the wheel in the first place since it
has already been invented by someone else.

The implementation of an OrderedShellCon-
figurationList therefore amounts to writing the
constructor, which must ensure that the constructed
object satisfies the invariant. Therefore it is necessary
to have the formal specification available in order to
inform the writing of the constructor (and also to inform
the independent writing of the code that verifies the
properties of the constructor).

3.2. ConfigurationTreeList

A ConfigurationTreeList is declared as fol-
lows:

class ConfigurationTreeList:
public vector<ConfigurationTree>
{

public:
ConfigurationTreeList
(ConfigurationTree,
OrderedConfigurationList);
ConfigurationTreeList
(AtomicConfiguration);

};

It therefore follows the same pattern as Ordered-
ShellConfigurationList, of inheriting a con-
tainer instantiation and adding functionality. In this
case the functionality is in the form of two constructors.

Most of the operations on a Configuration-
TreeList are indistinguishable from those on other
lists in the system (and any system), and these are
implemented simply by picking them off the shelf by
instantiating a generic component. The code that is
specific to a ConfigurationTreeList has one
and only one place in the system, within the two con-
structors, which encapsulate all the work involved in
generating a ConfigurationTreeList from an
AtomicConfiguration.

www.manaraa.com

66 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

3.2.1. STL algorithms
It is important to bear in mind that whatever form

of ordered container is used for a Configuration-
TreeList, the term ‘ordered’ simply refers to the
fact that the ordering is a property that is expected
to be displayed by the container: it is not main-
tained by it. (It is of course possible to create such
a container, whereby each operation ensures that or-
dering is maintained). However, in Config, it is
the responsibility of the container instantiator to en-
sure that ordering is maintained. In the case of the
construction of a ConfigurationTreeList, the
ConfigurationTrees are not appended to the list
in the desired order. Consequently it is necessary to
sort the list to put the trees in order after generation.
This step highlights the power of the STL. To sort the
ConfigurationTreeList ctl, it is only neces-
sary to write:

sort(ctl.begin(), ctl.end());

Clearly for this to be possible, constrained gener-
icity is again at work. The sort algorithm in
the STL relies on an ordering operator < be-
ing defined for ConfigurationTree, or un-
ambiguously for some type T on the inheritance
chain of ConfigurationTree. Apart from
this, the sort algorithm knows nothing else about
ConfigurationTrees, and all it knows about the
container they are in is that it observes the iterator proto-
col. If a ConfigurationTreeList was reimple-
mented using a list<T> instead of a vector<T>,
the sort line in the code would not need to be changed.
It is said to be ‘loosely coupled’.

4. Supporting design by contract

4.1. The notion of contract

Human contracts involving two parties are charac-
terised by two major properties:

– each party is persuaded to enter into the contract
by the benefits on offer; they accept that along
with privilege comes responsibility, and are will-
ing to therefore incur some obligations to obtain
the benefits;

– these benefits and obligations are documented in
a contract document. The contract document pro-
tects both parties. It protects the client by specify-
ing the minimum that should be done: the client is

entitled to receive a certain result. It protects the
supplier by specifying how little is acceptable: the
contractor must not be liable for failing to carry
out tasks outside of the specified scope.

Clearly, what is an obligation for one party involved
is usually a benefit for the other. Design by Contract
applies the notion of contract to software design. Each
routine states the contract it is willing to enter into with
a client. It states a precondition, which must be sat-
isfied by the client in order for the client to enjoy the
benefits of the contract; and it states a postcondition,
which details the benefits of the contract for the client.
If either the precondition or postcondition of a routine
are not met at any stage in the execution of the system,
the contract has been broken and the error can be high-
lighted. Properties that must be maintained by all rou-
tines of a class can be grouped, and has become known
as the class invariant.

One important aspect of Design by Contract is what
happens to the contract when one class inherits from
another. This issue (often cited as the Liskov Substi-
tutability Principle [28]) is discussed by Meyer, and its
emulation in C++ is dealt with in another paper by the
current authors [29].

4.2. Supporting design by contract in general

The VDM++ language permits the precise spec-
ification of the properties of the Config component.
These properties can be stated in terms of an abstract
model, without concern for how this behaviour can be
produced algorithmically or for the details of a particu-
lar implementation language. This frees the mind from
unnecessary detail, facilitating analytical thought and
communication of ideas. However, Bertrand Russel-
l’s aphorism that ‘the advantages of implicit definition
over construction are roughly those of theft over honest
toil’ holds true, and the honest toil stage remains. This
section gives an example of using the generic libraries
we have developed which help verify that the outcome
of the honest toil is the same as that obtained by theft.

In order to achieve this in C++, it is necessary to
provide a framework in which the behavioural proper-
ties stated in VDM++ can be monitored, and also pro-
vide a framework in which behavioural properties can
be expressed. The current authors have demonstrated
how a framework for the expression of preconditions
and postconditions, along with class invariants, can be
added to C++ classes by the instantiation of templates,
and in such a way that the code of the class methods

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 67

remains unchanged [29]. We are now working on a
framework for expressing the behavioural properties,
and what is below is very much a snapshot of the cur-
rent state of our work. The next section on adding
predicates to the STL may be more accessible for those
not familiar with generic programming.

Consider, for example, the VDM++ statement of
the ShellList::erase(index) routine, which is
stated like this.

class ShellList
instance variables
. . .
shells: seq of ShellOccupancyRange;
. . .
operations
. . .
erase(index : nat1)
ext rd shells
pre index<=len(shells);
post forall i in set inds(shells) &
i < index => shells(i)=shells∼(i) and
i >= index => shells(i)=shells∼(i+1)
and
len(shells)=len(shells∼)-1;
. . .
end ShellList

The instantiation

typedef DBC0<ShellList, int> Erase;

within the scope of the ShellList class in C++
brings the function

bool ShellList::Erase::post(int)

into scope. The definitions of the templates ensure
that this function is automatically evaluated after the
erase(..) method has executed, and an exception is
thrown if the stated condition is not met. This function
has a generic definition, but this can be overridden by
specialisation so that it mirrors the VDM++ statement,
and this is done in this case as follows:

bool ShellList::Erase::post(int
index)
{
return forall(shells,
ShellListErasePost(* object, index,
* old))
}

The parameter object is a pointer to the cur-
rent object (i.e. in this case, a ShellList) which
is brought into the scope of the pre(..) and
post(..) routines by the instantiation of the generic
class DBC0<.>. The parameter old is a pointer to
a (deep) copy of the object state prior the operation,
again made automatically accessible by the instantia-
tion. The definition makes use of the generic function
forall(..). We are developing a library of functions
which facilitate the rapid transformation of VDM++
statements into executable predicates in C++. Quan-
tifiers, comprehensions and sequence/set transformers
are all amenable to this approach.

The forall(..) function takes a function object
ShellListErasePost(..) as a parameter. This
function object is a specialisation of the generic class
ternary predicate<Object, T1, T2>. It is
fundamental to the utilisation of constrained gener-
icity that the instantiating type may be required to
display certain properties. The instantiator can be
helped in this by providing them with a template
class displaying some or all of the required prop-
erties, which can be specialised or inherited. The
class ternary predicate<Object, T1, T2>
is therefore provided, (which itself inherits from
the template class unary function<T, bool>,
which is provided by the STL).

The function object is defined

typedef ternary predicate<ShellList,
int, ShellList>ShellListErasePost;
bool ShellListErasePost(int i) {

int index(object1);
ShellList old(object2);
return ((i<index)?(object[i]==
old[i]):

(object[i]==old[i+1])) && \
onject.size()==old.size()-1

}

One of the unfortunate consequences of using
generic functions is that semantically significant infor-
mation can be lost through the parameter-passing mech-
anism. We are still investigating the best approach to
tackling this difficulty; in this case it has been reintro-
duced locally.

Note that iterators have not been used in this exam-
ple. This is because the VDM++ refers to values in
the current ShellList and the ShellList prior to
the erase operation using the same index; but the same
iterator would not be valid. This is another aspect of
the technique that we are hoping to improve upon.

www.manaraa.com

68 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

The use of function objects and generic routines in-
volving iterators is an unfamiliar style of programming
for many. However, it is a powerful abstraction tech-
nique and once mastered permits concentration on the
specific details of the problem in hand and offers the
potential for a great deal of code reuse .

4.3. Supporting design by contract using the STL –
monitoring and managing objects

It has been shown how the STL provides the data
structures, and many of the operations, needed to im-
plement the specification of a component. However,
the specification also states constraints on the data and
operations, and the STL as it stands does not provide
any way to incorporate these into the implementation.
In order to ensure software quality, it is important that
the constraints stated in the specification are monitored
during the development of the software to ensure that
the program behaviour is conforming to that stated by
the specification writer.

In order to accommodate Design by Contract into
the STL, it was necessary to find a way to extend the
capabilities of the STL, but without interfering with the
code. This can be done using the general approach
outlined in the previous section, but there is an alter-
native approach which requires less familiarity with
generic programming. This work is documented fully
elsewhere [30], and only a brief description is given
here. It is not necessary to be fully cognisant of how
the mechanism works in order to take advantage of the
enhanced STL.

In essence, the capabilities of the STL can be ex-
tended by using namespaces. A new version of the STL
is written within a new namespace. The client code,
occupying a third namespace, can remain unaltered, but
its behaviour changes depending upon which names-
pace it imports the named features of the STL from.
Thus, in a production version of the code, the client
can choose to revert to the original STL to abandon
constraint checking in favour of maximising execution
speed.

The claim that the client code can remain unaltered
needs some clarification. Clearly, in order to moni-
tor constraints, the client must supply definitions of
boolean functions that check the various assertions.
However, it is not necessary to declare these in the class
declarations: they are declared by the enhanced STL,
and given default definitions. The client simply de-
fines a specialisation of the required function, and the
compiler adopts it in preference to the default. Thus,

when reverting back to the original STL, these defi-
nitions must be removed since the functions that they
specialise are no longer declared. This can be achieved
by conditional compilation – there is no need for actual
editing.

The container types of the STL are enhanced
in a namespace stdpp by deriving new classes
from the existing containers. These new classes
can appear to have the same names as the orig-
inal ones (of course, in fact, the names are dif-
ferent: for example, ::std::vector<T> and
::stdpp::vector<T>). Loose coupling ensures
that the algorithms work on the new containers. stdpp
can be used as an alternative to the STL by any client.

The methods of the class can also be redefined in
such a way that they call the original methods, but
check that the precondition is satisfied beforehand and
the postcondition is satisfied afterwards. The client has
the option of supplying specific definitions of precon-
ditions and postconditions in the form of partial spe-
cialisations. Clearly granularity of control over which
checks are employed can be introduced.

There are really two separate cases to consider.
Firstly, there is the case of preconditions and postcon-
ditions which are inherent to a container operation be-
cause of the properties of the container. For example,
it is an error to try to erase an element from an empty
vector, so there should be a precondition on erasing
from a vector stating that the iterator parameter lies in
the range of iterators of the vector. Secondly, there are
the precondition and postconditions which are specific
to the instantiation of an operation for a particular type.
Both can be accommodated.

Once constraint monitoring is employed, the ques-
tion is immediately raised of what action should be
taken when a constraint is found to be violated. This
issue is beyond the scope of this paper. The default
choice is to throw an exception.

4.3.1. Creating and using managers
In Config, the enhanced STL containers inherit the

original container and a generic class. This generic
class, CoManager<T>, provides the additional func-
tionality required to create a type hierarchy which par-
allels the existing type structure of an object. This is
a more sophisticated (and resource-hungry) approach
than that described in the previous section. The type
sub-structure of any object can be paralleled by a Man-
ager structure which is automatically generated sim-
ply by instantiation of a Manager object. The sub-
Managers are generated recursively by calls in the Man-

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 69

Fig. 3. Atomic state editor.

ager constructors; constructors are written for each type
of container. These Managers creates a platform from
which a number of services can be administered. Mon-
itoring constraints is just one of these services; others
are described below.

4.3.1.1. Editing structured types.Whether the user
is permitted to enter values directly when editing a
structured type, or whether the user must choose from
a selection of pre-validated options, it is unlikely that
an instance of the type in its entirety will be changed. It
will be a component of the type that is under scrutiny,
such as using the Atomic State Editor to increment a
PrincipalQuantumNumber (Fig. 3).

The scheme is that where appropriate Managers
provide an operation – constructValue() – that
changes the value they manage. This change is
propagated throughout the Manager hierarchy by
a call to constructValues(..). This calls
constructValue() for the local value, and passes
the call on to its parent. Disassembly and reassem-
bly are modularised. The interface writer does not
have to consider how to provide an operation to update
thePrincipalQuantumNumberof a givenShell
of a given ShellOccupancyRange of a given
ShellList of a given AtomicConfiguration
(and then repeat the process for OrbitalAngular-
Momentum). The Manager writer encodes the as-
sembly of an instance of the Managed type from
the existing value and one amended component into
constructValue(). This process of assembly prop-
agates up the structure through the hierarchy of Man-
agers.

The process of disassembly is undertaken by sup-
plying the structure navigation information. The pro-
cess of reassembly is undertaken by a single call
to constructValues(..), which recurses up the
Manager hierarchy.

4.3.1.2. Edit operation sensitivity.Considering again
Fig. 3, it can be seen that some operations on the current
AtomicConfiguration are sensitive – available
to the user – and some are not. The button sensitivity
reflects the constraints given in the specification: the
user is not permitted to create an invalid instance of an
AtomicConfiguration.

The sensitivity of a given button in the editor at a
given time (i.e. in a given state) can be determined
by fully stating the precondition of the operation. The
precondition states for which values of the domain of
the operation the postcondition is guaranteed. An im-
plicit part of any precondition or postcondition is that
the class invariant holds after the operation. The com-
plete class invariant of a container object is made up
of the conjunction of the invariants of its elements and
the invariant specific to the container. When the ac-
tion of the operation, and the desired postcondition are
known, mathematically determining the precondition
is a daunting task even in such a straightforward case.

A simpler approach is for the system to try the oper-
ation beforehand and see if an invalid object results. Of
course, this is not an approach that can be adopted in
all circumstances: ‘erase hard disc’, ‘fire missiles’ are
examples of operations where it would be undesirable
to determine availability by this means. Clearly, it only
works for readily-reversible operations, or when it can
be performed on a harmless copy of the object in ques-
tion. This is possible in Config, where the Manager
structure readily facilitates this.

4.3.1.3. Data display prototyping.One of the aims of
the GRACE project, which has been ongoing for a num-
ber of years, has been to provide a graphical user inter-
face on UNIX workstations to computational physics
software running on supercomputers. MOTIF [31] was
chosen from the outset for this purpose, and subse-
quently it has become necessary to develop ways to use
it with C++. Encapsulation of graphics elements into
reusable classes is dealt with by Young [32] amongst
others. The Manager and CoManager classes provide a
platform for developing data display prototypes which
interact well with MOTIF.

The MOTIF specifics needed to display each type
of container class can be provided by classes such as

www.manaraa.com

70 D. Maley and I. Spence / Config: a case study in combining software engineering techniques

vectorDisplay<T> and pairDisplay<pair<
T1, T2>>. These classes can be used to dis-
play all types used within Config, although particu-
lar requirements at times require special adaptations
to be written, such as that used to display large
ConfigurationTrees.

5. Conclusions

The traditional approach to component design has
very often been functional decomposition. However,
this model is not always congruent with the system
under consideration, and conceptual integrity is lost.
The object-oriented approach proposes object-based
decomposition, and argues in addition that this ap-
proach will yield more stable units of reuse. One
mechanism for facilitating this structuring process is
inheritance, and is an essential characteristic of object-
orientation. A second mechanism, which is largely or-
thogonal to the first, and is not restricted to object ori-
ented languages, is genericity. An implementation lan-
guage which provides both facilities offers the software
engineer a very powerful structuring tool.

In order to take best advantage of these mechanisms,
it is important to produce a precise statement of the
nature of the component under consideration. Often,
it takes bitter experience of the classic maxim, ‘imple-
ment in haste, debug at leisure’ to convince software
writers of the benefits of investing in the early parts
of the software design lifecycle. Basing design and
implementation on formal specification is an approach
which is invaluable when striving to improve software
quality. A criticism sometimes made of formal specifi-
cation is that specifications tend to become out-of-date
and inconsistent with the implementation. However,
we would argue that if the specification language is de-
scribing the data types which reflect a physical reality
then these do not go out of date, and it is the implemen-
tation alone that runs the risk of inconsistency. The use
of design by contract can help to highlight whenever
such an inconsistency is introduced.

This paper focuses on the benefits of using an imple-
mentation language that supports generic expression.
In the implementation phase, it is demonstrated that
genericity enables the reuse of existing components.
The STL provides both containers and algorithms that
permit rapid implementation of precisely specified data
types. Common functionality can be obtained ‘off the
shelf’, enabling the implementor to concentrate on the

aspects that are specific to the particular problem do-
main.

In addition to facilitating the reuse of existing com-
ponents, genericity makes it possible for the implemen-
tor to capture commonalities within the current compo-
nent, and to create reusable components. The intention
may be for reuse within the same component or it may
be wider afield.

The combination of VDM++ and C++ also permits
predicates specifying component behaviour to be stated
in an abstract mathematical language, and then encoded
into checks that can be carried out at runtime. The
likelihood of introducing errors during this encoding
process can be minimised by constructing a library of
functions in C++ that mirror the language constructs
of VDM++. It should be noted that these checks can
potentially be very expensive and are intended as a
development aid – they are not intended to be performed
in production code (although preconditions in library
routines may optionally be validated if desired).

The powerful combination of inheritance and gener-
icity provided by C++ make it possible to add a sub-
stantial degree of support for design by contract. In
the absence of formal proof, this technique minimises
the gap between the formal specification statement and
the implementation. For whilst the data structures and
the basic operations that manipulate them are similar
in a specification language such as VDM++ and in
a generic library such as the C++ STL, the use of a
formal specification language permits the expression of
properties that cannot be obtained ‘off the shelf’. These
must be encoded algorithmically by the scientific pro-
grammer; effort can be concentrated here because the
basic data structures have been provided. The formal
specification informs the design, the design directs the
implementation, and genericity makes it possible to add
support for checking that the implementation does in-
deed display the stated properties, adding to confidence
in the quality of the product.

WebAppendices

http://www.stmarys-belfast.ac.uk/˜ d.maley/
research/. . .
I. config1.rtf; II. OrderedVector.doc;
III. RSTable.doc; IV. F90Verbosity.doc.

References

[1] I. Sommerville, Software Engineering,(2nd ed.), Addison-
Wesley, Wokingham, 1985.

www.manaraa.com

D. Maley and I. Spence / Config: a case study in combining software engineering techniques 71

[2] M. Jackson, System Development,Prentice-Hall, Eaglewood
Cliffs, 1983.

[3] D. Maley, I. Spence and P. Kilpatrick, Config: A GRACE tool
for constructing configuration trees. Computer Physics Com-
munications Special Issue on continuum states of atoms and
molecules, Computer Physics Communications114 (1998),
271–294, Elsevier, North Holland.

[4] Alexaner Stepanov (Silicon Graphics Inc.) and Meng Lee
(Hewlett Packard Laboratories), The Standard Template Li-
brary, 1995.

[5] B. Stroustrup, The C++ Programming Language, (3rd ed.),
Addison Wesley, 1997.

[6] V.M. Burke, P.G. Burke and N.S. Scott, GRACE, Computer
Physics Communications69 (1992), Elsevier, North Holland.

[7] Scott, Kilpatrick and Maley, The Formal Specification of Ab-
stract Data Types and their Implementation in Fortran 90,
Computer Physics Communications84 (1994), 201–225, El-
sevier, North Holland.

[8] IFAD documentation, http://www.ifad.dk.
[9] Cliff Jones, Systematic Software Development using VDM,

(2nd ed.), Prentice Hall, 1980.
[10] Eugene J. Rollins and Jeannette M. Wing, Specifications as

search keys for software libraries, Proceedings of the Interna-
tional Conference on Logic Programming,1991.

[11] Christophe Meudec, Automatic Generation of Software Test
Cases from Formal Specification, PhD thesis,Queen’s Uni-
versity of Belfast, 1998.

[12] M. Holcombe, An Integrated methodology for the specifica-
tion, verification and testing of systems, Journal of Software
Testing, Verification and Reliability3(3–4) (1993), 149–163.

[13] I. Hayes, Specification Directed Module Testing, IEEE Trans-
actions on Software Engineering12(1) 124–133.

[14] L. Zucconi and K. Reed, Building Testable Software, Software
Engineering Notes,Sep. 1996, pp. 51–55.

[15] J. Bicarregui, J. Dick, B. Matthews and E. Woods, Making the
most of formal specification through animation, testing and
proof, Science of Computer Programming29 (1997), 53–78.

[16] J. Guttag and J.J. Horning, Larch: languages and tools for
formal specification,Springer Verlag, 1993.

[17] C++ International Standard ISO/IEC 14882, Section 14.7.3,
ANSI 1998.

[18] Alexander Stepanov, Interviewed by Al Stephens in Dr. Dobb’s
Journal, 1995.

[19] Bertrand Meyer, Applying Design by Contract, Computer
(IEEE) 25(10) (Oct. 1992), 40–51.

[20] Betrand Meyer, Object-Oriented Software Construction,(2nd
ed.), Prentice Hall, 1997.

[21] Bennet P. Lientz and E. Burton Swanson, Software Mainte-
nance Management: a Study of the Maintenance of Computer
Application Software in 487 Data Processing Organisations,
Addison Wesley, Reading (Mass.), 1980.

[22] J. Michael Spivey, The Z Notation: A Reference Manual,(2nd
ed.), Prentice-Hall, Englewood Cliffs, NJ, 1992.

[23] Kevin Lano, Formal Object Oriented Development,Springer
Verlag, 1995.

[24] I.J. Hayes, C.B. Jones and J.E. Nicholls, Understanding the
differences between VDM and Z: Technical Report UMCS-93-
8-1,Department of Computer Science, Manchester University,
1993.

[25] Gary T. Leavens and Yoonsik Cheon, Preliminary Design of
Larch/C++, in: Proceedings of the First International Work-
shop on Larch,U. Martin and J.M. Wing, eds., Dedham,
Springer Verlag, July 1992.

[26] Erich Gamma, Richard Helm, Ralph Johnson and John Vlis-
sides, Design Patterns for Object Oriented Software,Addison
Wesley, 1994.

[27] D. Maley, P.L. Kilpatrick, N.S. Scott, E.W. Schreiner and
G.H.F. Diercksen, The Formal Specification of Abstract Data
Types and their Implementation in Fortran 90: Implementa-
tion Issues Concerning the Use of Pointers, Computer Physics
Communications84 (1994), 201–225, Elsevier.

[28] Barbara H. Liskov and Jeannette M. Wing, A behavioral notion
of subtyping, ACM Transactions on Programming Languages
and Systems16(6) (Nov. 1994, 1811–1841.

[29] David Maley and Ivor Spence, Supporting Design by Contract
in C++ with Subtyping, Journal of Object-oriented Program-
ming(2000), (to appear).

[30] David Maley and Ivor Spence, Emulating Design by Con-
tract in C++, TOOLS-29 (Europe), Richard Mitchell, Alan
Cameron Wills, Jan Bosch and Bertrand Meyer, eds., pp. 66–
75, IEEE, 1999.

[31] Marshall Brain, MOTIF – The Essentials and more,Digital
Press, 1992.

[32] Douglas Young, Object-Oriented Programming with C++
and OSF/MOTIF,Prentice Hall, 1995.

www.manaraa.com

Copyright of Scientific Programming is the property of IOS Press and its content may not be
copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

